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ABSTRACT

Results from experiments conducted in reduced gravity on the thermocapillary motion of

bubbles and drops are discussed.

INTRODUCTION

When a drop or bubble is placed in another fluid and subjected to the action of a tem-

perature gradient, the drop will move [1]. Such motion is a direct consequence of the variation

of interfacial tension with temperature, and is termed thermocapillary migration. The literature

on both experimental and theoretical research in this field up to approximately 1989 has been

adequately reviewed by Wozniak et al. [2] and Subramanian [3].

The movement of suspended objects such as drops and bubbles is relevant to situations that are

likely to arise in low gravity experiments. Liquid drops may be encountered during the formation

and solidification of alloys, and in separation processes such as extraction that might be used in

long duration space voyages for recycling purposes. Also, a dispersion of vapor bubbles might be

encountered in heat transfer fluids used in spacecraft which undergo phase change. Gas bubbles

arise in crystallization where dissolved gases are rejected at the interface and also in separation

processes such as gas absorption. In most applications, it is likely that a collection of drops or
bubbles would be involved in which the individual members will influence the motion of each other,

and also possibly coalesce leading to changes in size distributions over time.

The speed at which a drop migrates under the action of a temperature gradient can be obtained

by solving the governing Navier-Stokes and energy equations along with the associated boundary

conditions. _,_hen convective transport effects become important, the problems involved are nonlin-

ear. The relative importance of convective transport of energy when compared to conduction can be

judged fl'om the magnitude of the P6clet number whereas a similar ratio for momentum transport

is described by the Reynolds number, Re. When a velocity scale characteristic of thermocapillary

migration is used, the P6clet number is known as the Marangoni number, Ma. The Capillary
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number also is technically a parameter; however all observations to date involve no measurable

deformation in shape. The relevant quantities are defined below.

RVo
Re - , (1)

v

R vo
Ma - (2)

Here, R is the radius of the drop or bubble, # is the dynamic viscosity of the continuous phase, v,

its kinematic viscosity, and g, its thermal diffusivity. The reference velocity, Vo, is defined below.

lOT I I I R
vo = (3)

P

In the above, a T is the rate of change of interfacial tension with temperature, and VTo_, the

temperature gradient imposed in the continuous phase fluid.

In the linear limit when the Reynolds and Marangoni numbers are negligible, the contribution

of thermocapillarity can be extracted from an experiment on the ground. Therefore, experiments

designed to explore thermocapillary migration on the ground are subject to this important limita-

tion; some of this experimental work is discussed in the above two reviews.

To fully explore the parameter space in the Reynolds and Marangoni numbers, investigators

have attempted to carry out experiments in reduced gravity conditions. The literature is discussed

in Balasubramaniam et al. [4]. The previous studies were subject to many limitations which raise

questions regarding the utility of the data. Therefore, we performed thermocapillary migration

experiments in reduced gravity under conditions closer to those assumed in theoretical models.

The experiments were carried out aboard the IML-2 mission of the NASA Space Shuttle in the

summer of 1994. Here a brief summary of the experiments is given. For more details, the reader is

referred to [4].

EXPERIMENTAL APPARATUS AND PROCEDURE

The experiments were performed in an apparatus labeled the BDPU (Bubble, Drop, Par-

ticle Unit) which was provided by the European Space Agency through a cooperative arrangement

with the National Aeronautics and Space Administration. The apparatus consists of a "facility"

which provided power, optical diagnostics and illumination, imaging facilities including a video

camera and a motion picture camera, and other sundry support services. Within this facility, a

test cell that was specific to the experiment was inserted by the payload specialist on the Shuttle
when needed.

Conceptually, the experiments were simple. Within a test cell mounted in the facility and filled

with a suitable liquid, a temperature gradient was established, followed by the introduction of a

bubble or a drop as desired. The subsequent motion of the object, in the direction of the applied

temperature gradient, was recorded for later analysis on videotape on the ground as well as on cine

film on board the Shuttle in selected experiments. When a bubble or drop reached the hot wall, it

was extracted and another was introduced after a small waiting period.

The heart of the experimental apparatus is the test cell shown schematically in Figure 1. Two

rectangular test cells were available. Both were of identical dimensions, measuring 60 x 45 x 45

mm in the interior. This cavity was filled with a Dow-Corning DC-200 series silicone oil of nominal

viscosity 50 centistokes in both cells. It was possible to maintain the two end walls (made of

aluminum) in the long dimension of the cell at fixed known temperatures so that a temperature
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gradient could be established in the z-direction. Within the cavity, an injection needle was available

when needed. When not in use, the tip was flush with the cold aluminum surface at its center.

It was possible to introduce air bubbles in one test cell, and Fluorinert FC-75 drops in the other

cell. The diameters of the bubbles varied from approximately 2.1 mm to 14.8 mm, and those of

drops ranged from 2.0 to 14.4 mm. After a bubble or drop completed its traverse, it was possible

to extract it from the hot wall using an extraction tube mounted at the center of a net.

The equipment provided white background illumination and the opportunity to capture images

of the interior of the test cell on videotape on the ground. Also, a limited amount of cine film was

available, and was used to capture images during selected runs at 18 frames per second.

In any given run, the procedure was first to establish the desired temperature gradient over a

period of 2 hours. This was followed by the injection, traverse, and subsequent extraction of a bubble

or drop. This process was repeated until the allotment of real_time video capability was exhausted.

The entire procedure was performed six times permitting the use of different temperature gradients,

and allowing a total of approximately 6 hours of observation time. A total of 22 bubbles and 98

drops were recorded on videotape, and 16 of the bubbles and 65 of the drops on cine film. About

one-third of the data were on isolated drops or bubbles. Multiple objects were encountered in most

of the remaining runs. From the latter, a few usable runs on pairs of drops were identified; data on

a representative pair will be presented and discussed in the next section.

RESULTS AND DISCUSSION

Isolated Bubbles and Drops

We observed from the data that the bubbles and drops were spherical to within the

uncertainty of the diameter measurements made. Only one velocity per traverse, evaluated at a

suitable location, is reported. Typically, the bubble or drop achieved a quasi-steady velocity, to

within the uncertainty of our velocity measurements, after moving about half a radius from the

injection location. To be conservative, we report data only when the object has moved at least one
radius.

In Figure 2, the velocity data on isolated air bubbles are plotted in scaled form and compared

with available predictions. The velocity of a bubble is scaled using the velocity it would have in the
limit of negligible values of the Reynolds number and the Marangoni number. The various physical

properties are evaluated at the estimated temperature in the undisturbed fluid at the x-y plane

containing the center of the bubble. Typical uncertainty estimates are shown in the figure.

Included in the drawing for comparison is a theoretical prediction originally presented by

Balasubramaniam and Lavery [5] who solved the governing momentum and energy equations for the

quasi-steady velocity and temperature fields and bubble velocity when the Reynolds and Marangoni

numbers are not negligible. The authors also assumed a spherical bubble in an infinite extent of

fluid, and Newtonian and incompressible flow with constant physical properties, except for the

interracial tension which was assumed linear with temperature. Their finite difference code was

used to develop the predictions shown. The Prandtl number varied between 370 and 575 in the

bubble runs because of the change in temperature. The actual curve was prepared from theoretical

predictions for a Prandtl number of 370, but the predictions are not very sensitive to the Prandtl

number in the above range. Also included is the prediction of Balasubramaniam and Subramanian

in the asymptotic limit of large Marangoni number for negligible Reynolds number.

It is evident from Figure 2 that the data support the qualitative trend predicted from the

quasi-steady theory with the following discrepancies noted. First, for small values of Ma in the
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approximate range 5 to 10, the observed velocities are significantly larger than those predicted. Sec-

ond, while the four data points at values of Marangoni number between 250 and 800 are distributed

around the asymptote for large values of Ma, it is not evident that the overall trend of the data is

to achieve this asymptotic behavior; clearly we need to extend the observations to larger values of

the Marangoni number for making a definitive statement. The discrepancies may be attributed to

a variety of reasons which are discussed in [4]. The most plausible explanation appears to be that

interactions of the walls with the migrating bubbles via the temperature fields can account for the
observation.

In Figure 3, we show a drawing similar to Figure 2, but for Fluorinert FC-75 drops. These data

display a trend very similar to that shown by bubbles in Figure 2. The reference velocity is once

again the predicted velocity at negligible values of Reynolds and Marangoni number from Young

et al.. Note the asymptotic trend displayed by the scaled velocity at values of Ma _> 100. We do

not have a theoretical prediction in this case so that no statements can be made with respect to

agreement with predictions or lack thereof. The behavior of the scaled velocity as Ma approaches

small values is similar to that observed in the case of bubbles. The curve shown in the figure is a

fitted result and does not represent a prediction.

Interacting Drops

A few usable runs were performed on pairs of Fluorinert drops, in these, the leading drop

was smaller than the trailing drop. It was observed that the leading drop moved at approximately

the velocity it would have if isolated, but the trailing drop was found to move at a reduced velocity

compared to the value it would have if isolated. This remarkable observation can be explained

qualitatively by recognizing the existence of a thermal wake behind the leading drop in which

temperature gradients are weakened. The trailing drop moves into this region and therefore experi-

ences a reduction in the driving force for its motion. We intend to explore this phenomenon in more

detail and also extend the range of parameters obtained in IML-2 in follow-on flight experiments

scheduled for conduct on the LMS mission of the Space Shuttle in summer 1996.

CONCLUDING REMARKS

Results from observations made on isolated bubbles and drops moving in a temperature

gradient in a space laboratory are reported. The results for the migration velocity of air bubbles

qualitatively confirm the trend predicted by a theoretical model, but there are quantitative dis-

crepancies. Some tentative explanations are offered to account for these discrepancies. The data

for drops display similar trends. Experiments on pairs of drops revealed the remarkable feature

that a small leading drop, which itself appears unaffected in its motion, can significantly influence

the motion of a larger trailing drop almost twice its diameter. It is conjectured that this is a

consequence of the thermal wake behind the leading drop.
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Figure 2. Scaled velocity of the bubbles versus the Marangoni number. The solid curve

represents predictions from a numerical solution. The horizontal solid line is from a prediction for

negligible Reynolds number and Ma _ oo based on asymptotic analysis.

1.4

1.2

>

•_ 0.8
0

0.6

O.4

_ 0.2

0
1 10 100

Ma

Figure 3. Scaled velocity of the Fluorinert FC-75 drops versus the Marangoni number. The

solid curve represents an empirical curve fit of the data.

558


